- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hannaford, Blake (2)
-
Li, Yangming (2)
-
Miyasaka, Muneaki (2)
-
Caballero, David (1)
-
Haghighipanah, Mohammad (1)
-
Lewis, Andrew (1)
-
Li, Shuai (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Improving Control Precision and Motion Adaptiveness for Surgical Robot with Recurrent Neural NetworkSurgical robot research is driven by the desire of improving surgical outcomes. This paper proposed a Recurrent Neural Network based controller to address two problems: 1) improving control precision, 2) increasing adaptiveness for robot motion (explained in Section I). RNN was adopted in this work mainly because 1) the problem formulation naturally matches RNN structure, 2) RNN has advantages as an biologi- cally inspired method. The proposed method was explained in detail and analysis shows that the proposed method is able to dynamically regulate outputs to increase the adaptiveness and the control precision. This paper uses Raven II surgical robot as an example to show the application of the proposed method, and the numeral simulation results from the proposed method and three other controllers show that the proposed method has improved precision, improved high robustness against noise and increased movement smoothness, and it keeps the manipulator links as far away as possible from physical boundaries, which potentially increases surgical safety and leads to improved surgical outcomes.more » « less
-
Haghighipanah, Mohammad; Miyasaka, Muneaki; Li, Yangming; Hannaford, Blake (, IEEE International Conference on Robotics and Automation)null (Ed.)
An official website of the United States government

Full Text Available